JuliaStats Statistics and Machine Learning made easy in Julia.
In [29]:
    
# Pkg.add("DataFrames")
    
In [30]:
    
using DataFrames # DataFrames to represent tabular datasets
                 # Database-style joins and indexing
                 # Split-apply-combine operations, reshape and pivoting
                 # Formula and model frames
    
In [31]:
    
run(`head data/iris.csv`)
    
    
In [32]:
    
iris = readtable("data/iris.csv")
    
    Out[32]:
Descripción (estadística) del dataset (columnas), similar a summary de R.
In [33]:
    
describe(iris)
    
    
In [34]:
    
using Gadfly # Similar a ggplot2 de R
    
In [35]:
    
plot(iris, x="Species", y="PetalLength", color="Species", Geom.boxplot)
    
    Out[35]:
In [36]:
    
plot(iris, color="Species", x="PetalLength", Geom.histogram)
    
    Out[36]:
In [37]:
    
plot(iris, x=:PetalLength, y=:PetalWidth, color=:Species, Geom.point, Geom.smooth(method=:lm))
    
    Out[37]:
In [38]:
    
# Pkg.add("GLM")
    
In [39]:
    
using GLM # Generalized linear models
linear = fit(LinearModel, PetalWidth ~ PetalLength, iris) # PetalLength en R: 0.4157554
    
    Out[39]:
In [40]:
    
using Clustering
    
In [41]:
    
cl = kmeans(convert(Matrix{Float64}, iris[:, [:PetalWidth, :PetalLength]])', 3)
    
    Out[41]:
In [42]:
    
cl.centers
    
    Out[42]:
In [43]:
    
by(iris, :Species, df -> (mean(df[:PetalWidth]), mean(df[:PetalLength])))
    
    Out[43]: